

Allgemeine bauaufsichtliche Zulassung

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum:

Geschäftszeichen:

03.06.2016

164-1.34.13-3/16

Zulassungsnummer:

Z-34.13-227

Antragsteller:

Stahlwerk Annahütte Max Aicher GmbH & Co. KG 83404 Ainring - Hammerau

Geltungsdauer

vom: 2. März 2016 bis: 2. März 2021

Zulassungsgegenstand:

Bodenvernagelung System "SAS" mit Zuggliedern aus Stabstahl mit Gewinderippen S 555/700 (SAS 555), Ø 63,5 mm

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 17 Seiten und drei Anlagen. Der Gegenstand ist erstmals am 1. März 2011 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 17 | 3. Juni 2016

I ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Seite 3 von 17 | 3. Juni 2016

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Gegenstand dieser allgemeinen bauaufsichtlichen Zulassung ist die Bodenvernagelung System "SAS". Die Vernagelung der Bodenkörper muss in der auf den Anlagen dargestellten Weise aus Bodennägeln und einer Außenhaut unter Beachtung der nachfolgenden Bestimmungen hergestellt werden. Sie ist eine Maßnahme, die Zug- und Scherfestigkeit des Bodens soweit zu erhöhen, dass der vernagelte Bodenkörper als monolithischer Block betrachtet und nachgewiesen werden kann. Die Außenhaut braucht unterhalb der Baugrubensohle nicht eingebunden zu werden. Der maximale Nagelabstand beträgt 1,5 m in horizontaler und vertikaler Richtung; er darf nur überschritten werden, wenn ein räumlicher Standsicherheitsnachweis geführt wird.

1.2 Anwendungsbereich

1.2.1 Baumaßnahmen

Die Bodenvernagelung kann zur Sicherung von Geländesprüngen, z. B. Baugrubenwände und Hanganschnitte, zur Sicherung bestehender Böschungen und zur Stabilisierung belasteter Erdkörper bei Unterfangungsarbeiten mit beliebiger Wandneigung angewendet werden. Dabei ist zwischen vorübergehendem (≤ 2 Jahre) und dauerndem (> 2 Jahre) Einsatz zu unterscheiden.

1.2.2 Bodenarten

Die Bodenvernagelung kann in nichtbindigen oder bindigen Böden (vgl. DIN EN 1997-1¹ in Verbindung mit DIN EN 1997-1/NA² und DIN 1054³, Abschnitt 3.1) angewendet werden. Die Bodenvernagelung darf nicht ausgeführt werden, wenn im Boden oder im Grundwasser Stoffe enthalten sind, die Beton angreifen (vgl. DIN 4030-1⁴). Wenn der Sulfatgehalt im Boden oder Grundwasser nach DIN 4030-1⁴, Tabelle 4, schwach angreifend (XA1) ist, können die Bodennägel eingebaut werden, sofern zur Herstellung ein Zement mit hohem Sulfatwiderstand (SR-Zement) nach DIN EN 197-1⁵ verwendet wird.

1.3 Baugrunderkundung

In Anlehnung an DIN EN 1997-1¹ in Verbindung mit DIN EN 1997-1/NA² und DIN 1054³ sind die für Stützbauwerke erforderlichen geotechnischen Untersuchungen unter der Leitung eines Sachverständigen für Geotechnik durchzuführen und auszuwerten. Dabei ist auch zu prüfen, ob der anstehende Boden in der vorgesehenen Abbautiefe vorübergehend standfest ist. Der Boden darf auch nicht ausbrechen, wenn die Außenhaut im Spritzbetonverfahren hergestellt wird.

1	DIN EN 1997-1:2009-09	Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln; Deutsche Fassung EN 1997-1:2004 + AC:2009
2	DIN EN 1997-1/NA:2010-12	Nationaler Anhang - National festgelegte Parameter – Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln
3	DIN 1054:2010-12	Baugrund - Sicherheitsnachweise im Erd- und Grundbau - Ergänzende Regelungen zu DIN EN 1997-1
	DIN 1054/A1:2012-08	Baugrund - Sicherheitsnachweise im Erd- und Grundbau - Ergänzende Regelungen zu DIN EN 1997-1:2010; Änderung A1
	DIN 1054/A2:2015-11	Baugrund - Sicherheitsnachweise im Erd- und Grundbau - Ergänzende Regelungen zu DIN EN 1997-1:2010; Änderung 2
4	DIN 4030-1:2008-06	Beurteilung betonangreifender Wässer, Böden und Gase – Teil 1: Grundlagen und Grenzwerte
5	DIN EN 197-1:2011-11	Zement - Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement; Deutsche Fassung EN 197-1:2011

Seite 4 von 17 | 3. Juni 2016

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Stahlzugglied

Es darf nur Stabstahl mit Gewinderippen S 555/700 (SAS 555), Nenndurchmesser 63,5 mm, gemäß der allgemeinen bauaufsichtlichen Zulassung Nr. Z-1.1-1 verwendet werden.

2.1.2 Korrosionsschutz und Herstellung des für den Einbau und das Verpressen vorgefertigten Bodennagels

2.1.2.1 Vorübergehender Einsatz (Kurzzeitbodennagel)

Für den vorübergehenden Einsatz der Bodennägel soll der Stabstahl mit Gewinderippen SAS 555 mit einer Zementsteindicke von 20 mm umgeben sein; die Mindestüberdeckung muss ≥ 15 mm betragen. Hierfür ist der SAS 555 mit Abstandhaltern nach Anlage 1 und Anlage 3 zu versehen, deren Abstand ≤ 2 m sein muss.

Auf die Abstandhalter darf bei verrohrten Bohrungen verzichtet werden, wenn die Dicke der Verrohrung im Anfängerrohr oder an den Nippeldurchgängen ≥ 2,0 cm beträgt und wenn gleichzeitig der Schaft mit einem höheren als dem hydrostatischen Druck verpresst wird.

2.1.2.2 Dauernder Einsatz (Dauerbodennagel)

Der Korrosionsschutz von Dauerbodennägeln ist in einem Werk aufzubringen. Der Stabstahl mit Gewinderippen SAS 555 ist auf annähernd der gesamten Länge (vgl. Anlage 2) mit einem gerippten Kunststoffhüllrohr zu überziehen. Als Kunststoffhüllrohre dürfen nur solche verwendet werden, die aus PVC-U nach DIN EN ISO 1163-1⁶, aus Polyethylen mit einer Formmasse nach DIN EN ISO 1872-1⁷ - PE, E, 45 - T022 oder aus Polypropylen mit einer Formmasse nach DIN EN ISO 1873-1⁸ - PP - B, EAGC, 10-16-003 oder nach DIN EN ISO 1873-1⁸ - PP - H, E, 06-35-012/022 bestehen. Es ist darauf zu achten, dass nur gerade Rohre verwendet werden. Das Hüllrohr muss eine gleichmäßige Wanddicke ≥1 mm haben; es dürfen nur Rohre verwendet werden, die keine Blaseneinschlüsse aufweisen und deren Pigmentverteilung gleichmäßig ist. Die Abmessungen der Hüllrohre sind in der Anlage 3 angegeben.

Die gegebenenfalls erforderlichen einzelnen Schüsse der PVC-U-Hüllrohre sind miteinander zu verschrauben und mit einem für PVC geeigneten Kleber oder durch Umwicklung mit einem für PVC geeigneten Klebeband sorgfältig abzudichten. Als PE- oder PP-Hüllrohre sind durchgehende Rohre zu verwenden.

Kunststoffe - Weichmacherfreie Polyvinylchlorid (PVC-U)-Formmassen - Teil 1: DIN EN ISO 1163-1:1999-10 Bezeichnungssystem und Basis für Spezifikationen (ISO 1163-1:1995) - Deutsche Fassung EN ISO 1163-1:1999 DIN EN ISO 1872-1:1999-10 Kunststoffe - Polyethylen (PE)-Formmassen - Teil 1: Bezeichnungssystem und Spezifikationen (ISO 1872-1:1993) - Deutsche Basis für EN ISO 1872-1:1999 Kunststoffe - Polypropylen (PP) Formmassen - Teil 1: Bezeichnungssystem und DIN EN ISO 1873-1:1995-12 Basis für Spezifikationen (ISO 1873-1:1995) Deutsche EN ISO 1873-1:1995

Seite 5 von 17 | 3. Juni 2016

Am erdseitigen Ende ist das Hüllrohr mit einer HDPE-Injizier- und Endkappe zu verschließen. Das luftseitige Ende ist mit einer HDPE-Entlüftungskappe zu verschließen. Der Ringraum zwischen dem Stabstahl mit Gewinderippen und dem Hüllrohr ist bei schräg geneigtem Nagel von unten nach oben mit Einpressmörtel nach DIN EN 447⁹ vollständig zu verpressen. Zusätzlich sind DIN EN 445¹⁰ und DIN EN 446¹¹ sowie Bauregelliste A Teil 1¹² zu berücksichtigen. Die Einhaltung des Abstandes ≥ 5 mm zwischen dem Stabstahl mit Gewinderippen und dem Hüllrohr ist durch Abstandhalter, die alle 1,0 m anzuordnen sind, sicherzustellen. Anstelle der Abstandhalter kann eine Rundstahlwendel Ø 5 mm oder eine Kunststoffwendel Ø 6 mm aus PE oder PVC, Ganghöhe 0,5 m, verwendet werden.

Das mit Einpressmörtel verfüllte Hüllrohr muss den Stabstahl mit Gewinderippen soweit umschließen, dass es in den Bereich der Außenhaut hineinreicht.

Die Hüllrohre müssen im Bohrloch durch Abstandhalter zentriert werden, deren Abstand ≤ 2 m sein muss. Die Hüllrohre müssen von mindestens 10 mm Zementmörtel überdeckt werden (siehe Anlage 2).

Auf die Abstandhalter darf bei verrohrten Bohrungen verzichtet werden, wenn die Dicke der Verrohrung im Anfängerrohr oder an den Nippeldurchgängen ≥ 2,0 cm beträgt und wenn gleichzeitig der Schaft mit einem höheren als dem hydrostatischen Druck verpresst wird.

2.1.3 Luftseitige Verankerung

Das Stahlzugglied ist durch Verankerungen entsprechend der allgemeinen bauaufsichtlichen Zulassung Nr. Z-1.5-175 für geschraubte Muffenverbindungen und Verankerungen von Stabstahl mit Gewinderippen S 555/700, Nenndurchmesser 63,5 mm, zu verankern. Wenn von den dortigen Festlegungen abgewichen wird, z. B. hinsichtlich der Zusatzbewehrung, ist die Tragfähigkeit der Ankerplatten nachzuweisen, dies gilt dann auch für die Einleitung der Kräfte in die Außenhaut. Die Weiterleitung der Kräfte in der Außenhaut (z. B. Spaltzugkräfte) ist in jedem Einzelfall nachzuweisen (siehe hierzu auch Abschnitt 3.4).

2.1.4 Stoßausbildung

Das Stahlzugglied darf durch Muffen entsprechend der allgemeinen bauaufsichtlichen Zulassung Nr. Z-1.5-175 für geschraubte Muffenverbindungen und Verankerungen von Stabstahl mit Gewinderippen S 555/700, Nenndurchmesser 63,5 mm, gestoßen werden (siehe auch Anlagen 1, 2 und 3 sowie Abschnitt 4.6).

Die Muffen sind durch Muttern zu kontern.

Auf die Kontermuttern kann bei nicht dynamischen Einwirkungen verzichtet werden, wenn ein HDPE-Schrumpfschlauch (CPSM) entsprechend der beim Deutschen Institut für Bautechnik hinterlegten Beschreibung gemäß Anlage 3 angeordnet wird.

2.2 Lagerung, Transport und Kennzeichnung

2.2.1 Lagerung und Transport

Dauerbodennägel dürfen erst nach dem Erhärten des Zementmörtels von der Montagebank abgehoben werden.

Der Transport und die Lagerung der korrosionsgeschützten Bodennägel müssen so erfolgen, dass die Hüllrohre nicht beschädigt werden können (z. B. parallele Lagerung in Spundwandprofilen o. ä.).

9	DIN EN 447:1996-07			Spanngliede			en für	üblichen
		Einpressmörtel - D						
10	DIN EN 445:1996-07	Einpressmörtel für						
11	DIN EN 446:1996-07	Einpressmörtel fi	ür S	Spannglieder	- Einpres	ssverfahren -	Deutsche	Fassung
		EN 446:1996						
12	Bauregelliste A, Bauregelliste	B und Liste C - Ausg	abe 2	2015/2 -; online	abrufbar	unter www.dib	ot.de	

Seite 6 von 17 | 3. Juni 2016

2.2.2 Kennzeichnung

Der Lieferschein des für den Einbau und das Verpressen vorgefertigten Bodennagels muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Aus dem Lieferschein muss u. a. hervorgehen, für welche Bodennägel die Teile bestimmt sind und von welchem Werk sie hergestellt wurden. Mit einem Lieferschein dürfen nur Teile für einen zu benennenden Bodennageltyp geliefert werden.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Bodennagelkomponenten und der für den Einbau und das Verpressen vorgefertigten Bodennagelkonstruktion mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Bodennagelkomponenten und der vorgefertigten Bodennagelkonstruktion eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichtes zur Kenntnis zu geben.

Die Bestätigung der Übereinstimmung der Bodenvernagelung System "SAS" mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss mit einer Übereinstimmungserklärung auf der Grundlage der Bestimmungen gemäß Abschnitt 2.3.4 erfolgen.

2.3.2 Werkseigene Produktionskontrolle

2.3.2.1 Allgemeines

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens die folgenden Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile,
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Seite 7 von 17 | 3. Juni 2016

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu kennzeichnen, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen.

2.3.2.2 Stabstähle mit Gewinderippen, Verankerungs- und Verbindungsmittel

Es dürfen nur Stabstähle mit Gewinderippen S 555/700 (SAS 555), Verankerungs- und Verbindungsmittel (siehe Angaben im Abschnitt 2.1) verwendet werden, für die entsprechend den zugehörigen allgemeinen bauaufsichtlichen Zulassungen Nr. Z-1.1-1 und Nr. Z-1.5-175 ein Übereinstimmungsnachweis geführt wurde.

Die dort getroffenen Festlegungen zur Eingangskontrolle sind zu beachten.

2.3.2.3 Schrumpfschläuche

Die Materialeigenschaften der Schrumpfschläuche und des Klebers sind mit einer Werksbescheinigung "2.1" nach DIN EN 10204¹³ zu bestätigen. Je Los (100 Stück) sind am Ausgangsmaterial die Wanddicken an 3 Stellen zu messen und der Kleberauftrag zu bestimmen. Die Entscheidung, ob das Los angenommen oder zurückgewiesen wird, ist nach Abschnitt 2.3.2.5 zu treffen.

2.3.2.4 Korrosionsschutz der Dauerbodennägel

2.3.2.4.1 Hüllrohre

Die Zusammensetzung der Formmasse ist mit einer Werksbescheinigung "2.1" nach DIN EN 10204¹³ zu bestätigen. Je Los (100 Rohre) ist ein Hüllrohr zu entnehmen, an diesem sind die Wanddicken jeweils an einer Innen- und Außenrippe und an der Flanke der Rohre sowie der Durchmesser zu messen. Die Abmessungen müssen den beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegten Zeichnungen entsprechen. Die Entscheidung, ob das Los angenommen oder zurückgewiesen wird, ist nach Abschnitt 2.3.2.5 zu treffen.

2.3.2.4.2 Werkmäßig aufgebrachter Korrosionsschutz

Die im Werk nach Abschnitt 2.1.2.2 zu ergreifenden Korrosionsschutzmaßnahmen sind an jedem Bodennagel durch Augenschein zu überprüfen (statistische Auswertung nicht erforderlich).

Für den Einpressmörtel sind Prüfungen entsprechend DIN EN 447⁹ durchzuführen. Zusätzlich sind DIN EN 445¹⁰ und DIN EN 446¹¹ sowie Bauregelliste A Teil 1¹² zu beachten.

Seite 8 von 17 | 3. Juni 2016

2.3.2.5 Prüfplan

Sofern jeder einzelne Messwert gleich oder größer dem geforderten Mindestwert ist, so ist das Los anzunehmen. Anderenfalls können weitere Proben entnommen werden. An diesen Proben sind dieselben Messungen wie an der ersten Probe durchzuführen. Die Messergebnisse sind mit den vorangegangenen Messungen zusammenzufassen. Aus allen Werten sind der Mittelwert x und die Standardabweichung s zu bilden. Ist nunmehr die daraus zu bildende Prüfgröße (Zahlenwert)

z = x - 1,64 s

gleich oder größer als der geforderte Mindestwert, so ist das Los anzunehmen, anderenfalls zurückzuweisen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung durchzuführen. Es sind auch Proben für Stichprobenprüfungen zu entnehmen und die Prüfwerkzeuge zu kontrollieren. Die Probenahme und die Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

2.3.4 Übereinstimmungsnachweis für die Ausführung der Bodennägel

Die Bestätigung der Übereinstimmung der Bodenvernagelung System "SAS" mit den Bestimmungen der allgemeinen bauaufsichtlichen Zulassung muss für jede Bodenvernagelung von der ausführenden Firma mit einer Übereinstimmungserklärung auf der Grundlage der Kontrolle der Ausführung gemäß Abschnitt 4.7 erfolgen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Allgemeines

Für den Entwurf und die Bemessung von vernagelten Stützkonstruktionen gelten die Technischen Baubestimmungen, insbesondere DIN EN 1997-1¹, DIN EN 1997-1/NA², DIN 1054/A1³ und DIN 1054/A2³ soweit im Folgenden nichts anderes bestimmt ist

Vernagelte Stützkonstruktionen sind mindestens in die Geotechnische Kategorie GK 2 einzuordnen. Es ist anhand von DIN 1054³, Abschnitt A 9.1.3 A (4) zu überprüfen, ob Kriterien vorliegen, die eine Einstufung in die Geotechnische Kategorie GK 3 erfordern.

Die für den Grenzzustand der Tragfähigkeit zu erbringenden Nachweise sowie die zugehörigen Grenzzustände und Nachweisverfahren sind in Tabelle 1 aufgelistet. Die Nachweise sind sowohl für den Endzustand als auch für maßgebende (Zwischen-) Bauzustände zu führen.

721377 16 1.34.13-3/16

Seite 9 von 17 | 3. Juni 2016

<u>Tabelle 1:</u> Übersicht der Tragfähigkeitsnachweise für vernagelte Stützkonstruktionen

	Nachweis	Grenzzustand/	Abschnit	t in	
		Nachweis- verfahren	DIN EN 1997-1 ¹	DIN 1054 ³	
vernagelte Stützkon- struktion	Grundbruch	GEO-2	6.5.2	6.5.2	
	Gleiten	GEO-2	6.5.3	6.5.3	
Struktion	Stark exzentrische Belastung	GEO-2	6.5.4	6.5.4	
	Gesamtstand- sicherheit	GEO-3	11.5.1	11.5.1	
Nägel	Materialversagen	STR			
	Herausziehen	GEO-3		A 11.5.4.2	
Außenhaut	Teilflächenbelastung, Durchstanzen etc.			A 11.5.4.1	
Anmerkung: [Die Teilsicherheitsbeiwerte	sind DIN 1054 ³ , Tabell	en A 2.1 bis A 2.3 zu er	ntnehmen.	

3.2 Nachweise im Grenzzustand der Tragfähigkeit für die vernagelte Stützkonstruktion

Für die Berechnung einer vernagelten Stützkonstruktion ist eine rechnerische Rückwand durch das Ende der Nägel anzunehmen. Für die geometrisch so definierte Gewichtsstützwand aus einem quasi-monolithischen vernagelten Bodenkörper sind nachzuweisen:

- (a) Grundbruchsicherheit,
- (b) Gleitsicherheit.
- (c) Sicherheit gegen Gleichgewichtsverlust infolge stark exzentrischer Belastung,
- (d) Gesamtstandsicherheit.

Anmerkung 1: Aufgrund von Vergleichsrechnungen sind die Nachweise (a) bis (c) bei bis zu 5 m hohen Nagelwänden immer dann entbehrlich, wenn $I_N \ge 0.6 \cdot h$ (Nagellänge I_N ; Wandhöhe h) gilt und die Bodenverhältnisse nach unten nicht ungünstiger werden.

Anmerkung 2: Ein expliziter Nachweis für den Grenzzustand EQU gemäß DIN 1054³, Abschnitt Zu 6.5.4 A (3) braucht nicht geführt zu werden. Ausreichende Sicherheit gegen Gleichgewichtsverlust infolge stark exzentrischer Belastung ist gegeben, wenn die Bedingungen für die Lage der Sohldruckresultierenden gemäß DIN 1054³, Abschnitt A 6.6.5 eingehalten werden (siehe Abschnitt 3.6 dieser allgemeinen bauaufsichtlichen Zulassung).

3.3 Nachweis der Nägel

Nach DIN 1054³ ist eine ausreichende Sicherheit gegen Materialversagen und Herausziehen eines Bodennagels nachzuweisen.

3.3.1 Bemessungsbeanspruchung der Nägel

Die Bemessungsbeanspruchung für die Nägel ist nach DIN 1054³, Abschnitt A 11.5.4.1 zu ermitteln

(a) aus dem Bemessungserddruck und der dem jeweiligen Element zugeordneten Fläche der Oberflächensicherung für den Grenzzustand GEO-2,

Seite 10 von 17 | 3. Juni 2016

(b) aus dem Defizit des Kräfte- bzw. Momentengleichgewichts an Gleitkörpern, die von Bruchmechanismen mit geraden bzw. gekrümmten Gleitflächen begrenzt sind, wobei die zu variierenden Gleitflächen einen Teil der Sicherungselemente schneiden. Der Nachweis erfolgt nach DIN 4084¹⁴ für den Grenzzustand GEO-3.

Der größere Wert der Bemessungsbeanspruchung ist maßgebend.

Zu (a) - Bemessungsbeanspruchung E_{E,d} aus Erddruck

Die Bemessungseinwirkung auf die Oberflächensicherung der Stützkonstruktion ist im Grenzzustand GEO-2 aus dem charakteristischen aktiven Erddruck gemäß DIN 1054³ und DIN 4085¹⁵ ggf. unter Berücksichtigung des Mindesterddrucks zu ermitteln, wobei die Erddruckneigung parallel zur Neigung der Bodennägel anzunehmen ist.

Anmerkung: Da die Spritzbetonhaut keine Kräfte in den Untergrund abträgt, muss der Erddruck zur Erfüllung des Kräftegleichgewichts in Richtung der Bodennägel wirken. Diese müssen jedoch nicht notwendigerweise senkrecht zur Außenhaut sein.

Die Erddruckverteilung für den Anteil aus ständigen Einwirkungen kann aufgrund der stattfindenden Umlagerungen gleichförmig angenommen werden. Die Ordinate der Rechteckfigur beträgt dann:

$$e_{ag,k}(z) = e_{ag,k} = E_{ag,k} \cdot \cos(\alpha) / h = konstant$$
 (3.1)

mit α = Wandneigungswinkel (gemäß DIN 4085¹⁵)

h = Wandhöhe

Dieser Erddruck aus ständigen Einwirkungen auf die Spritzbetonhaut darf zusätzlich um 15 % abgemindert werden.

$$red e_{aq.k} = 0.85 \cdot e_{aq.k} \tag{3.2}$$

Der Erddruck aus veränderlichen Einwirkungen ist nach DIN 4085¹⁵ anzusetzen und darf nicht abgemindert werden. Damit ergibt sich die resultierende Bemessungsbeanspruchung aus Erddruck zu:

$$e_{a,d}(z) = \text{red } e_{ag,k} \cdot \gamma_G + e_{ap,k}(z) \cdot \gamma_Q$$
 [kN/m²] (3.3)

mit γ_G , γ_Q = Teilsicherheitsbeiwerte gemäß DIN 1054³, Tabelle A 2.1 für den Grenzzustand GEO-2

Für einen Nagel in der Tiefe z_i ergibt sich die Bemessungsbeanspruchung somit zu:

$$\mathsf{E}_{\mathsf{E},\mathsf{d}} = \mathsf{e}_{\mathsf{a},\mathsf{d}} \cdot \Delta \mathsf{F} \tag{3.4}$$

mit $\Delta F = s_h \cdot s_v / \cos(\alpha)$

s_h = horizontaler Nagelabstand

s_v = vertikaler Nagelabstand

Anmerkung: Alle vorgenannten Größen beziehen sich auf den Einflussbereich des betrachteten Nagels i in der Tiefe z_i . Die zugehörige Fläche der Oberflächensicherung kann für Nägel in Randbereichen (z. B. oberste oder unterste Nagellage) von denen der übrigen Nägel verschieden sein.

Die maßgebliche Bemessungsbeanspruchung $E_{\text{E,d}}$ für den Tragfähigkeitsnachweis gemäß Abschnitt 3.3.3 dieser Zulassung ist das Maximum aus allen so ermittelten Nagelkräften.

1

DIN 4084:2009-01

DIN 4085:2011-05

Baugrund – Geländebruchberechnungen Baugrund – Berechnung des Erddrucks

Allgemeine bauaufsichtliche Zulassung

Nr. Z-34.13-227

Seite 11 von 17 | 3. Juni 2016

Zu (b) – Bemessungsbeanspruchung $E_{N,d}$ aus Kräfte- oder Momentengleichgewicht

Zur Ermittlung der Bemessungsbeanspruchung aus dem Kräfte- oder Momentengleichgewicht ist der Nachweis der Geländebruchsicherheit nach DIN 4084 14 zu führen, wobei die zu variierenden Gleitflächen sämtliche oder einen Teil der Nägel schneiden. Dabei darf die über Mantelreibung eingeleitete Kraft pro Meter Nagellänge entlang der Krafteinleitungsstrecke konstant und für alle Nägel gleich angenommen werden. Die Kraft eines Nagels $F_{\text{Ni,d}}$ im Verankerungsbereich ergibt sich dann zu:

$$F_{\text{Nid}} = T_{\text{m.d}} \cdot I_{\text{r.i}} \tag{3.5}$$

mit: T_{m,d} = rechnerisch für die Erreichung des Grenzgleichgewichts erforderliche mittlere Axialkraft pro laufenden Meter Nagel außerhalb der Gleitfuge, also im "passiven" bzw. ruhenden Bodenbereich

I_{r.i} = Nagelrestlänge außerhalb der Gleitfuge in der i-ten Nagellage

Der unsicherste Bruchmechanismus ist derjenige, bei dem T_{m,d} zum Maximum wird.

Die maßgebliche Bemessungsbeanspruchung für einen Nagel aus dem Kräfte- oder Momentengleichgewicht ergibt sich für den Nagel mit der größten Restlänge $I_{r,max}$ außerhalb der Gleitfuge :

$$\mathsf{E}_{\mathsf{N},\mathsf{d}} = \mathsf{T}_{\mathsf{m},\mathsf{d}} \cdot \mathsf{I}_{\mathsf{r},\mathsf{max}} \tag{3.6}$$

mit I_{r,max} = größte Nagelrestlänge außerhalb der Gleitfuge

Ist gemäß DIN 1054³, Abschnitt A 11.5.4.1 A (5) für die Bemessungsbeanspruchung eines Nagels das Defizit des Kräfte- oder Momentengleichgewichtes maßgebend, so ist die diesem Nagel zugeordnete Fläche der Oberflächensicherung ΔF mit einem entsprechend höheren Bemessungserddruck zu belasten. Dieser ergibt sich, indem die rechnerisch erforderliche Bemessungsnagelkraft $E_{N,d}$ durch die dem Nagel zugewiesene Fläche der Oberflächensicherung dividiert wird. Insbesondere in den unteren Nagellagen wird dies oft maßgebend.

3.3.2 Bemessungswiderstände der Nägel

Herausziehwiderstand R_{A,d}

Der längenbezogene charakteristische Herausziehwiderstand eines Bodennagels $T_{Pm,k}$ muss durch Herausziehversuche in-situ ermittelt werden (Nagelprüfungen gemäß Abschnitt 4.7 dieser Zulassung). Der Bemessungswert des längenbezogenen Herausziehwiderstands $T_{Pm,d}$ ergibt sich aus dem charakteristischen Wert zu:

$$T_{Pm,d} = T_{Pm,k} / \gamma_a$$
 [kN/m] (3.7)
mit γ_a = Teilsicherheitsbeiwert gemäß DIN 1054³, Tabelle A 2.3

für den Grenzzustand GEO-3

Der Bemessungswert für den größten Herausziehwiderstand eines Einzelnagels ergibt sich

dann zu:
$$R_{A,d} = T_{Pm,d} \cdot I_{r,max}$$
 [kN] (3.8)

Die mittlere Axialkraft pro laufenden Meter Nagel $T_{\text{Pm,d}}$ ist über die Tiefe t konstant anzusetzen. Im Fall t < 2,0 m unter GOK ist $T_{\text{Pm,d}}$ um 50 % abzumindern.

Materialwiderstand R_{B,d}

Die charakteristische axiale Zugwiderstandskraft R_{B.k} des Bodennagels bestimmt sich zu:

$$R_{B,k} = A_s \cdot R_e \tag{3.9}$$

mit A_s = Nennquerschnittsfläche des Stahlzugglieds

R_e = Zugspannung an der Streckgrenze

Allgemeine bauaufsichtliche Zulassung

Nr. Z-34.13-227

Seite 12 von 17 | 3. Juni 2016

Der Bemessungswert des Materialwiderstands ergibt sich dann zu:

$$R_{B,d} = R_{B,k} / \gamma_M$$
 [kN] (3.10)
mit $\gamma_M = 1.15$

Bei dynamischen Einwirkungen ist zusätzlich ein Nachweis gegen Ermüdung entsprechend den Bestimmungen der allgemeinen bauaufsichtlichen Zulassung für den Betonstabstahl mit Gewinderippen bzw. für die Verankerungen für den Betonstabstahl mit Gewinderippen zu

3.3.3 Nachweis der Tragfähigkeit der Nägel

Die Tragfähigkeitsnachweise der Nägel sind für den

- Herausziehwiderstand (Bodenwiderstand), (1)
- (2)Materialwiderstand (Bauteilwiderstand)

zu führen. Es ist nachzuweisen:

$$R_{A,d}$$
 bzw. $R_{B,d} \ge max \begin{cases} E_{E,d} \\ E_{N,d} \end{cases}$ (3.11)

3.4 Nachweis der Oberflächensicherung (Außenhaut)

Die Außenhaut ist nach DIN EN 1992-1-1¹⁶ in Verbindung mit DIN EN 1992-1-1/NA¹⁷ zu bemessen. Im Bereich der Nagelköpfe sind die Nachweise gegen Durchstanzen und der Teilflächenbelastung gemäß DIN EN 1992-1-1¹⁶ in Verbindung mit DIN EN 1992-1-1/NA¹⁷ zu

Die maßgebliche Bemessungsbeanspruchung ergibt sich analog zu Abschnitt 3.3.1 dieser allgemeinen bauaufsichtlichen Zulassung entweder aus dem Erddruck oder aus dem Defizit des Kräfte- bzw. Momentengleichgewichts.

3.5 Verformungen

Sollen die Verformungen von vernagelten Wänden eingeschränkt werden, so kann im Fall ohne Bebauung oberhalb einer Wand nach DIN 4084¹⁴, Abschnitt 11, verfahren werden. Im Fall einer Bebauung oberhalb einer Wand ist das Bauvorhaben in die Geotechnische Kategorie GK 3 einzustufen; DIN 10543 Abschnitt Zu 9.8 und Abschnitt Zu 11.6 sind zu beachten. Besondere Maßnahmen, wie z. B. der zusätzliche Einsatz von vorgespannten Ankern, können notwendig werden.

In bindigen Böden, die zum Kriechen neigen, müssen langfristig Kriechverformungen berücksichtigt werden. Die Verträglichkeit der möglichen Kriechverformungen mit den örtlichen Randbedingungen ist bei Dauerbauwerken zu überprüfen.

Anmerkung: Bei Versuchen mit vernagelten Wänden sind unter Eigengewicht Horizontalverschiebungen von bis zu 4 ‰ der Wandhöhe gemessen worden. Dabei betrugen die Nagellängen das 0,5-bis 0,7-fache der Wandhöhe.

Nachweise im Grenzzustand der Gebrauchstauglichkeit 3.6

Für den Nachweis der Gebrauchstauglichkeit sind die Anforderungen gemäß DIN 10543, Abschnitt A 6.6.5, Abschnitt Zu 9.8 und Abschnitt Zu 11.6 zu beachten. Insbesondere sind zur Begrenzung der Verdrehung der Stützkonstruktion und einer klaffenden Fuge die Bedingungen hinsichtlich der Lage der Sohldruckresultierenden gemäß DIN 10543 Abschnitte A 6.6.5 A (2) und A (3) zu beachten.

16 Konstruktion Stahlbeton-DIN EN 1992-1-1:2011-01 Eurocode 2: Bemessung und

Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010

DIN EN 1992-1-1/NA:2013-04 Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

17

Seite 13 von 17 | 3. Juni 2016

4 Bestimmungen für die Ausführung

4.1 Allgemeines

Der Einbau der Bodennägel darf nur unter verantwortlicher technischer Leitung der Firma Stahlwerk Annahütte Max Aicher GmbH & Co. KG erfolgen.

Der Einbau der Bodennägel darf aber auch von Unternehmen durchgeführt werden, die eine Bescheinigung der Firma Stahlwerk Annahütte Max Aicher GmbH & Co. KG vorlegen können, dass sie von ihr umfassend in der Herstellung der Bodennägel gemäß dieser allgemeinen bauaufsichtlichen Zulassung geschult worden sind.

Über die mit Dauerbodennägeln nach dieser allgemeinen bauaufsichtlichen Zulassung gesicherten Bauten ist vom Antragsteller eine Liste zu führen, aus der das Bauwerk, die Art und die Anzahl der Bodennägel hervorgehen.

4.2 Bohrarbeiten

Die Bohrlöcher sind verrohrt herzustellen, es sei denn, es wird auf der Baustelle nachgewiesen, dass die unverrohrt hergestellten Bohrlöcher standfest sind und auch beim Setzen der Bodennägel im Bohrloch kein Bodenmaterial nachbricht. Der Mindestbohrlochdurchmesser ergibt sich nach Abschnitt 2.1.2.1 bzw. 2.1.2.2 und ist in Anlage 3 angegeben; die Bohrlöcher sind mit einer Mindestneigung von 10° zur Horizontalen herzustellen.

Wenn bei verrohrter Bohrung das herausragende Ende der Bohrgarnitur ein kantiges Innengewinde bzw. ein scharfkantiges Rohrende besitzt, dürfen die Stahlzugglieder erst dann in das Bohrloch eingeführt werden, wenn auf das herausragende Ende der Bohrgarnitur eine kantenfreie Einführungstrompete oder ein Rohrnippel aufgesetzt worden ist, die das Innengewinde der Verrohrung völlig abdecken. Beim Einführen des Zugglieds ist darauf zu achten, dass der Korrosionsschutz nicht beschädigt wird.

4.3 Zementmörtel für die Verfüllung der Bohrlöcher

4.3.1 Zusammensetzung

Als Ausgangsstoffe für den Zementmörtel sind Zemente mit besonderen Eigenschaften nach DIN 1164-10¹⁸ und Zemente nach DIN EN 197-1⁵ - unter Berücksichtigung der vorliegenden Expositionsklasse gemäß DIN EN 206-1¹⁹ in Verbindung mit DIN 1045-2²⁰ (Tabellen 1, F.3.1 und F.3.2) -, Wasser nach DIN EN 1008²¹ sowie gegebenenfalls Zusatzmittel nach DIN EN 934-2²² in Verbindung mit DIN EN 206-1¹⁹/DIN 1045-2²⁰ oder mit allgemeiner bauaufsichtlicher Zulassung und natürlichen Gesteinskörnungen für Beton nach DIN EN 12620²³ und Bauregelliste B Teil 1¹², Anlage 1/1.3, unter Berücksichtigung von DIN EN 206-1¹⁹/DIN 1045-2²⁰, Anhang U, zu verwenden.

Der Wasserzementwert muss zwischen 0,35 und 0,50 liegen und soll besonders in bindigen Böden möglichst niedrig gewählt werden.

18	DIN 1164-10:2013-03	Zement mit besonderen Eigenschaften – Teil 10: Zusammensetzung, Anforderungen und Übereinstimmungsnachweis von Zement mit niedrigem wirksamen Alkaligehalt
19	DIN EN 206-1:2001-07	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität
	DIN EN 206-1/A1:2004-10	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung EN 206-1/A1:2004
	DIN EN 206-1/A2:2005-09	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung EN 206-1:2000/A2:2005
20	DIN 1045-2:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 2: Beton - Festlegung, Eigenschaften, Herstellung und Konformität - Anwendungsregeln zu DIN EN 206-1
21	DIN EN 1008:2002-10	Zugabewasser für Beton - Festlegung für die Probenahme, Prüfung und Beurteilung der Eignung von Wasser, einschließlich bei der Betonherstellung anfallendem
22	DIN EN 934-2:2009-09	Wasser, als Zugabewasser für Beton; Deutsche Fassung EN 1008:2002 Zusatzmittel für Beton, Mörtel und Einpressmörtel - Teil 2:
23	DIN EN 12620:2008-07	Betonzusatzmittel - Definitionen, Anforderungen, Konformität, Kennzeichnung und Beschriftung; Deutsche Fassung EN 934-2:2009 Gesteinskörnungen für Beton; Deutsche Fassung EN 12620:2002+A1:2008

Seite 14 von 17 | 3. Juni 2016

Der Zementmörtel muss maschinell gemischt werden. Bis zum Verfüllen dürfen keine Entmischungen und Klumpenbildungen auftreten.

4.3.2 Druckfestigkeit

Die Druckfestigkeit des Zementmörtels muss nach 28 Tagen mindestens der eines Betons der Festigkeitsklasse C25/30 entsprechen, sofern nicht anderweitig festgelegt.

Für den Nachweis der Druckfestigkeit sind an mindestens zwei Serien von 3 Proben je 7 Herstellungstage, jedoch an mindestens zwei Serien von 3 Proben je Baustelle, Prüfungen nach DIN EN 12390-3²⁴ durchzuführen.

4.3.3 Verfüllen der Bohrlöcher

Die Bohrlöcher sind vom erdseitigen Ende her mit dem Zementmörtel nach den Abschnitten 4.3.1 und 4.3.2 über die Bohrrohre oder über Verpressschläuche zu verfüllen. Hinsichtlich der Mindestüberdeckung mit Zementmörtel und der Anordnung von Abstandhaltern siehe Abschnitte 2.1.2.1 bzw. 2.1.2.2. Nachverpressungen sind zulässig. Nach dem Abbinden oder dem völligen Aushärten der Erstverpressung bzw. -verfüllung können weitere Verpressungen mit Zementmörtel durchgeführt werden. Hierzu ist der Bodennagel bereits vor dem Einbau mit einer mit Ventilen versehenen Injektionsleitung auszustatten (siehe Anlage 1 und Anlage 2). Das Aufsprengen des abgebundenen Zementmörtels kann mit Hilfe von Wasser erfolgen; die Nachverpressung ist jedoch mit Zementmörtel durchzuführen.

4.4 Außenhaut

Abgeschachtete Bereiche sind durch die Außenhaut unverzüglich zu sichern. Bei sich stark entspannenden Böden und/oder bei Baumaßnahmen, bei denen die Verformungen klein gehalten werden müssen, sind ggf. vor dem Aushub vorauseilende Wandsicherungen (z. B. Pfähle, Vorinjektionen) anzuordnen.

Die Außenhaut kann aus Spritzbeton oder Betonfertigteilen bestehen. Spritzbeton muss mindestens der Festigkeitsklasse eines Betons C 25/30 entsprechen. Für die Herstellung und Prüfung gelten DIN EN 14487-1²⁵ und DIN 18551²⁶.

Es ist für eine ausreichende Drainage zu sorgen, damit hinter der Außenhaut kein Wasserdruck entsteht.

4.5 Verankerung der Bodennägel an der Außenhaut

Zur Verankerung der Bodennägel an der Außenhaut sind die Ankerplatten (siehe Abschnitt 2.1.3) in frischem Spritzbeton oder in einem Mörtelbett senkrecht zum Zugglied zu verlegen. Das Bohrloch muss bis zur Wandvorderkante verfüllt werden; der durch die Schräglage des Nagels verbleibende Hohlraum ist mit Spritzbeton aufzufüllen. Nach dem Erhärten der Spritzbetonschale sind die Muttern handfest anzuziehen. Bei Dauerbodenvernagelungen muss über den Nagelköpfen eine Spritzbetonschicht von mindestens 5 cm aufgetragen werden, die mit Betonstahlmatten N 94 zu bewehren ist. Besteht die Außenhaut aus Fertigteilen, sind die Nagelköpfe gleichwertig zu schützen.

24	DIN EN 12390-3:2009-07	Prüfung von Festbeton - Teil 3 Druckfestigkeit von Probekörpern; Deutsche
		Fassung EN 12390-3:2009
	DIN EN 12390-3 Ber. 1:2011-11	Prüfung von Festbeton - Teil 3: Druckfestigkeit von Probekörpern; Deutsche
		Fassung EN 12390-3:2009, Berichtigung zu DIN EN 12390-3:2009-07; Deutsche
		Fassung EN 12390-3:2009/AC:2011
25	DIN EN 14487-1:2006-03	Spritzbeton-Teil 1: Begriffe, Festlegungen und Konformität; Deutsche Fassung
		EN 14487-1:2005
26	DIN 18551:2010-02	Spritzbeton - Nationale Anwendungsregeln zur Reihe DIN EN 14487 und Regeln
		für die Bemessung von Spritzbetonkonstruktionen

Seite 15 von 17 | 3. Juni 2016

4.6 Stoßausbildung

Der Abstand der Stoßstellen muss ≥ 1 m betragen. Die Muffen sind stets gemäß den Anlagen 1 und 2 zu sichern. Bei Dauerbodennägeln sind die freien Stabenden sowie das Innengewinde der Muffen so mit einer Beschichtung mit Korrosionsschutzmasse zu versehen, dass nach dem Zusammenbau der Innenraum der Muffe vollständig ausgefüllt ist. Als Korrosionsschutzmasse ist Denso-Jet oder Petro-Plast zu verwenden. Diese muss der beim Deutschen Institut für Bautechnik durch den Hersteller der Masse hinterlegten Rezeptur entsprechen. Der Hohlraum zwischen Mörtelsäule und Muffenstoß ist an beiden Seiten des Stoßes vor dem Aufbringen des Schrumpfschlauches mit einem Kunststoffdichtband "Densoplast Petrolatumbänder" oder "Kebu Petro-Band" nach DIN 30672²7 vollständig auszufüllen. Das Petrolatum ist durch Erwärmung anzuschmelzen. Die Koppelstelle ist dann durch einen HDPE-Schrumpfschlauch entsprechend Abschnitt 2.1.4 und Anlage 3 zu schützen. Die Schrumpfschläuche müssen im geschrumpften Zustand eine Mindestwanddicke von 1,5 mm aufweisen. Die Schrumpfschläuche sind durch Heißluft, Infrarotbestrahlung oder durch die weiche Flamme eines Gasbrenners aufzuschrumpfen.

4.7 Übereinstimmungserklärung

4.7.1 Allgemeines

Während der Ausführung der Bodenvernagelung System "SAS" sind Aufzeichnungen über den Nachweis der ordnungsgemäßen Ausführung vom Bauleiter oder seinem Vertreter zu führen.

Die Bestätigung der Übereinstimmung der Bodenvernagelung System "SAS" mit den Bestimmungen der allgemeinen bauaufsichtlichen Zulassung gemäß Abschnitt 2.3.4 muss für jede Bodenvernagelung von der ausführenden Firma mit einer Übereinstimmungserklärung auf der Grundlage der Kontrollen der Ausführung und der Prüfungen gemäß Abschnitt 4.7.2 erfolgen. Die Ergebnisse der Kontrollen sind aufzuzeichnen und auszuwerten.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Die Übereinstimmungserklärung des Bauausführenden muss mindestens die folgenden Angaben enthalten:

- Zulassungsnummer
- Bezeichnung des Bauvorhabens
- Datum der Ausführung
- Name und Sitz der ausführenden Firma
- Bestätigung über die Ausführung entsprechend den Planungsunterlagen
- Dokumentation der Ausgangsstoffe und Lieferscheine
- Art der Kontrollen oder Prüfungen
- Datum der Kontrolle bzw. Prüfung
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Besonderheiten
- Name, Firma und Unterschrift des für die Kontrollen und Prüfungen Verantwortlichen

27

DIN 30672:2000-12

Organische Umhüllungen für den Korrosionsschutz von in Böden und Wässern verlegten Rohrleitungen für Dauerbetriebstemperaturen bis 50 °C ohne kathodischen Korrosionsschutz – Bänder und schrumpfende Materialien

Seite 16 von 17 | 3. Juni 2016

Die Aufzeichnungen müssen während der Bauzeit auf der Baustelle bereitliegen. Sie sind nach Abschluss der Arbeiten mindestens fünf Jahre vom Unternehmen aufzubewahren.

Kopien der Aufzeichnungen sind dem Bauherrn zur Aufnahme in die Bauakten auszuhändigen und dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

4.7.2 Prüfungen

4.7.2.1 Probebelastungen

Der in der Statik angenommene rechnerische Herausziehwiderstand des Bodennagels ist durch Probebelastungen zu kontrollieren. Die Probebelastungen sind mindestens an 3 % aller Nägel bzw. mindestens an 3 Nägeln je Bodenart durchzuführen.

Bei der Probebelastung ist eine Zugkraft am Nagelkopf in Schritten von 20 kN oder in mindestens 5 Laststufen bis zur maximalen Prüflast P_P , dem 1,40-fachen Bemessungswert der Nagelbeanspruchung, aufzubringen. Überschreitet dabei die Kraft in den für den vernagelten Bodenkörper vorgesehenen Betonstabstählen mit Gewinderippen den Wert von 0,8 R_m (ermittelt mit dem charakteristischen Wert der Zugfestigkeit des Prüfnagels) bzw. 0,95 R_e (ermittelt mit dem charakteristischen Wert der Streckgrenze des Prüfnagels), so sind für die Probebelastungen Nägel höherer Tragfähigkeit, aber mit gleichen Verbundeigenschaften gegenüber dem Boden einzusetzen. Während der konstant zu haltenden Prüflast sind die Verschiebungen nach 1, 2, 5, 10 und 15 Minuten abzulesen. Die Beobachtungszeit ist zu verlängern, wenn zwischen 5 und 15 Minuten die Verschiebung $\Delta s > 0,5$ mm ist. In diesen Fällen ist die Beobachtung solange fortzusetzen, bis im Bereich eines Zeitintervalls von t_1 bis $t_2 = 10$ t_1 $\Delta s \le 2,0$ mm ist. Sofern bei allen geprüften Nägeln eine der Bedingungen erfüllt ist, ist der Nachweis der ausreichenden Tragfähigkeit im Boden erbracht. Während der Probebelastung ist darauf zu achten, dass der Nagel sich nicht auf die Außenhaut abstützt.

Die Prüfung darf nur an Nägeln ab einer Grenztiefe $t_g \ge 2,0$ m unter GOK erfolgen. Die Länge der Verbundstrecke l_V des Prüfnagels ist so zu wählen, dass sie 70 % bis 90 % der Gesamtlänge des längsten Nagels entspricht. Die Länge der Verbundstrecke sollte in einer Versuchsserie nicht sehr unterschiedlich sein.

Aufgrund der als gleichmäßig verteilt angenommenen Mantelreibung entlang der Verbundstrecke $I_{V,i}$ (vergleiche Abschnitt 3.3) lässt sich aus der im Versuch i erzielten maximalen Prüflast $P_{\text{max},i}$ die mittlere charakteristische axiale Nagelkraft pro laufenden Meter $T_{Pm,i}$ errechnen:

$$T_{Pm,i} = \frac{P_{max,i}}{I_{V,i}}$$
 [kN/m]

Hieraus ergibt sich der maßgebende längenbezogene charakteristische Herausziehwiderstand $T_{Pm,k}$ in Anlehnung an DIN EN 1997-1 1 7.6.3.2 (5)P zu:

$$T_{Pm,k} = MIN\left(\frac{\left(T_{Pm,i}\right)_{mitt}}{\xi_1}; \frac{\left(T_{Pm,i}\right)_{min}}{\xi_2}\right)$$
 [kN/m] (4.2)

Die Streuungsfaktoren ξ_1 und ξ_2 sind gemäß Tabelle 2 anzusetzen. Bei n \geq 8 Versuchen darf der Kleinstwert bei der Ermittlung von $(T_{Pm,i})_{min}$ unberücksichtigt bleiben, wenn dieser signifikant nach unten abweicht. Im Zweifelsfall ist zur Bewertung der Versuche ein Sachverständiger für Geotechnik hinzuzuziehen.

Seite 17 von 17 | 3. Juni 2016

<u>Tabelle 2:</u> Streuungsfaktoren zur Ableitung charakteristischer Werte aus Nagelprobebelastungen

	3	4	5	6	≥ 7
ξ ₁	1,35	1,25	1,15	1,05	1,00
52	1,35	1,15	1,00	1,00	1,00

4.7.2.2 Gruppenwirkung

Beträgt der Abstand der Nägel weniger als 0,8 m, ist die gegenseitige Beeinflussung durch eine Gruppenbelastung zu überprüfen. Die Anordnung des Prüffelds und die Mindestanzahl der zu prüfenden Nägel sind Bild 1 zu entnehmen.

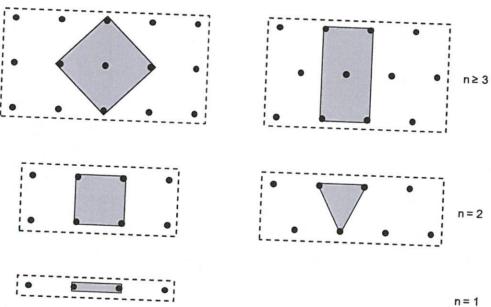
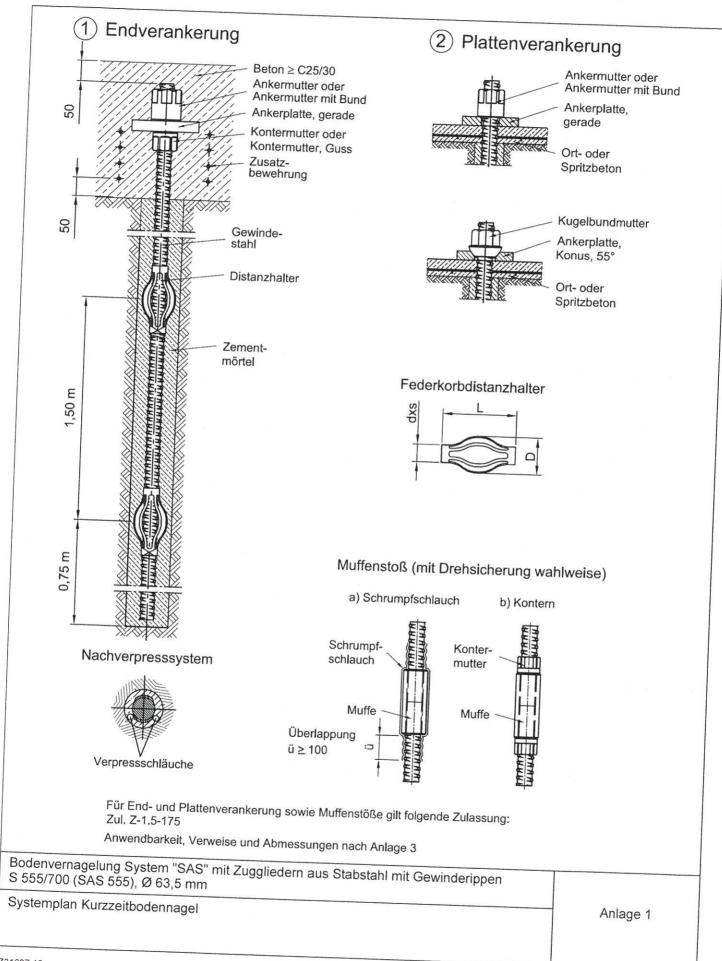
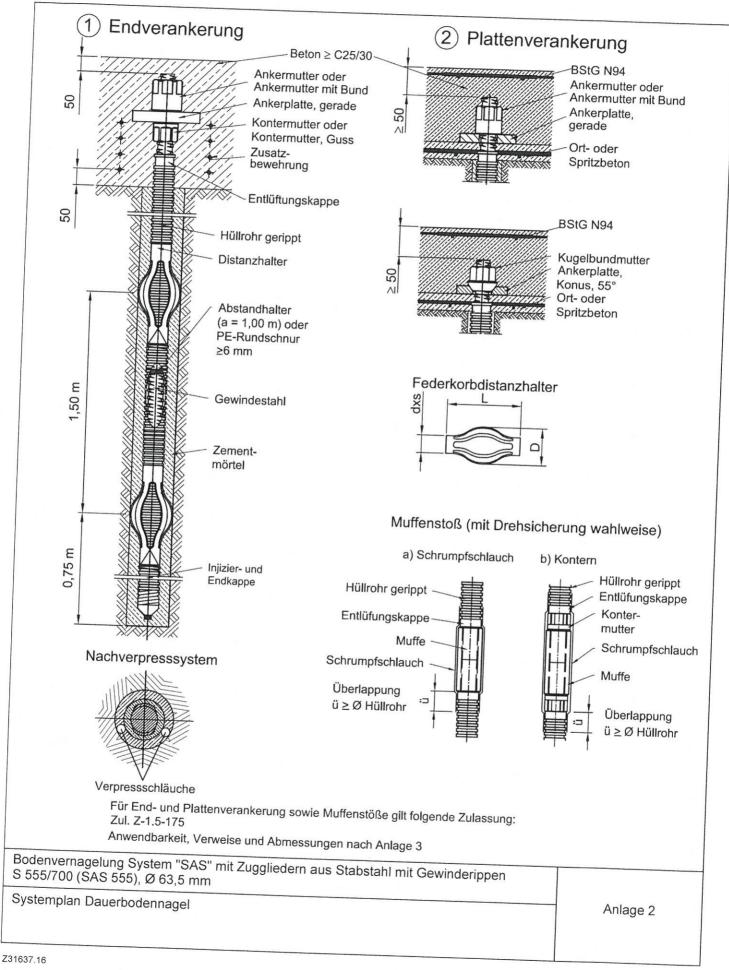


Bild 1: Anordnung des Prüffelds und Mindestanzahl der zu prüfenden Nägel bei Gruppenbelastungen in Abhängigkeit der Anzahl der Nagelreihen n


5 Bestimmungen für Nutzung, Unterhalt, Wartung

Wenn an das Bauwerk besondere Ansprüche hinsichtlich der Verformungen zu stellen sind, sind Nachprüfungen - Verformungsmessungen - nach Erstellung der Bodenvernagelung durchzuführen. Die Notwendigkeit ist an der Art des Bauwerks und/oder des anstehenden Bodens unter Berücksichtigung der öffentlichen Sicherheit und Ordnung zu ermessen. Die Entscheidung über die Notwendigkeit und den Umfang, die zeitlichen Abstände und die Dauer der Verformungsmessungen sind aufgrund der Entwurfsdaten im Einvernehmen mit dem eingeschalteten Sachverständigen für Geotechnik zu treffen.


Uwe Bender Abteilungsleiter

Kurzzeit- und Dauerbodennägel

		•
Gewindestahl	Ø	C2 F
Stahlgüte	- 6	63,5
		S 555/700
Verankerungen		Zul. Z-1.5-175

Kurzzeitbodennägel

Gewindestahl Ø	Einh.	CO. #
Federkorbdistanzhalter d.v.s		63,5
rederkorbdistanzhalter d x s	mm	75x3,6
L	mm	285
Mindout I I I I	mm	125
Mindestbohrlochdurchmesser	mm	110
Muffenverbindung		
Orehsicherung (wahlweise):		Zul. Z-1.5-175
- gekontert		Zul. Z-1.5-175
- Schrumpfschlauch		CPSM
Ø max/min	mm	120/54

Dauerbodennägel

Gewindestahl	Ø	Einh.	62.5
Hüllrohr gerippt			63,5
Belibbe	S	1	≥ 1
Foderick III	Ø a/i	mm	100/91
Federkobdistanzhalter	d x s	mm	110x3,2
	L	mm	285
Mindonth	min. D	mm	175
Mindestbohrlochdurchr	nesser	mm	120
Muffenverbindung			Zul. Z-1.5-175
Drehsicherung			
- gekontert			Zul. Z-1.5-175
- Schrumpfschlauch			CPSM
	Ø max / min	mm	164/80
Naße in mm			700

Bodenvernagelung System "SAS" mit Zuggliedern aus Stabstahl mit Gewinderippen S 555/700 (SAS 555), Ø 63,5 mm	
Kurzzeit- und Dauerbodennägel, Verweise und Abmessungen	Anlage 3
Z31637.16	